skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Blanchard, Evan K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Low-cost air quality sensors (LCSs) are becoming more ubiquitous as individuals and communities seek to reduce their exposure to poor air quality. Compact, efficient, and aesthetically designed sensor housings that do not interfere with the target air quality measurements are a necessary component of a low-cost sensing system. The selection of appropriate housing material can be an important factor in air quality applications employing LCSs. Three-dimensional printing, specifically fused deposition modeling (FDM), is a standard for prototyping and small-scale custom plastics production because of its low cost and ability for rapid iteration. However, little information exists about whether FDM-printed thermoplastics affect measurements of trace atmospheric gasses. This study investigates how five different FDM-printed thermoplastics (ABS, PETG, PLA, PC, and PVDF) affect the concentration of five common atmospheric trace gasses (CO, CO2, NO, NO2, and VOCs). The laboratory results show that the thermoplastics, except for PVDF, exhibit VOC off-gassing. The results also indicate no to limited interaction between all of the thermoplastics and CO and CO2 and a small interaction between all of the thermoplastics and NO and NO2. 
    more » « less